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v Our study of the iftsraction of millimeter wave fields with biological systems
has concentrated on Davydov's midel of soliton formation in alpha-helices. A
qualitative understanding has been obtained for the oscillatory modes of proteins in

the millimeter and submillimeter regions of the electromagnetic spectrum.
Specifically:

o - Four separate groups of frequencies are found to exist in short alpha-
helices, ranging from 200 gfgahertz to 6 terahertz.

o In long alpha-helices, soliton trapping is predicted for multiquanta
excitation at zero temperature, while the existence of solitons at room
temperature is called into question.

o A molecular orbital calculation of the exciton-phonon coupling constant 1n

the formamide dimer suggests that the value of this critical constant
st111 needs to be determined.

The results point up the need for further molecular orbital calculations and

experimental verification in order to understand the interaction of millimeter
waves with biological systems. -
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FINAL REPORT

A STUDY OF THE INTERACTION OF MILLIMETER WAVE FIELOS WITH BIOLOGICAL SYSTEMS

I.  INTRODUCTION

Recent experimental and theoretical work indicates that some biological systems
exhibit sensitivities to electromagnetic radfation in the millimeter and
submillimeter wavelengths. These fields, even at very low intensities, have been
reported to produce profound and marked alteratifons 1n a variety of organisms.
Specific changes include enhancement and suppression of growth rates in Saccaromyces
cerevisiae (1,2), modification of genetic materials in Drosophfla, (3), and
retardation of free radical reaction rates in Rhodopseudomonas Sphaeroides (4).

In industrial or military environments a significant number of personne)l are
exposed to electromagnetic fields comprised of two or more frequencies. The need to
account for the effects of compound fields places a special burden on biological
theory. Research with simple sinusoidal flelds indicates that the mechanisms are
nonlinear, that both amplitude and frequency are significant in accounting for
biological effects. Granting that both amplitude and frequency windows are present
for simple sinusoidal fields, the possibilfties for compound windows 1n
superpositions of two or more sinusofdal fields increases the number of possible
interactions beyond what {s reasonable for case-by-case testing. Responses to the
extremely low frequency (ELF) range (0.1 to 20000 Hz) and the microwave to
submillimeter range (300 MHz to 100 GHz) have particular interest because of the
challenge to current theories of {interactions between electromagnetic radfation anc
1iving tissue.

It is necessary to address the issues from the perspective of the physical
sciences in order to establish which biological processes are relevant to the EMF
sensitivities of 1tving systems. Adey (5) has recently proposed that the cell
membrane i1s the most likely site of interaction for the electromagnetic field.
Adey's model of transmembrane coupling between extracellular fields and
intracellular responses leaves unspecified several requirements for an amplifying
mechanism between fnitial cell surface events and resulting enzymatic responses.
The first requirement is for an amplification of the weak extracellular
electromagnetic fields sufficiently to perturb binding events at the cell surface.
The second {s for a means to pass a signal through the barrier presented by the cell
membrane. The third is for a source of energy to make up the difference between
molecular binding energies avaflable at the cell surface and energies released by
subsequent {intracellular events.

During the past year we have {nvestigated theoretical mechanisms for energy
transfer between ambient fields and fons or molecules at the cell surface to
proteins in the interior of the cell. Although current research is proceeding
toward an unambiguous fdentification of cell membrane systems {nvolved in the
transduction of weak electrical fields (see Adey, (6)) data on the specific
proteins involved is presently unavailable. Knowledge of protein structure is
essential to a study of protein dynamics; 1n most cases the analytical work has not
yet provided sequences of amino acfd residues and is far from yielding the detailed
picture of protein structure necessary for a treatment of the molecular dynamics.
For this reason we have focussed our research on a structural feature common to all
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folded or helical proteins, the amide-I hydrogen bond (~C=0--H-N-C=). The dynamics
of this system are complex, due to electron delocalization on the -C-N-C=0 portion
of the protein backbone and the nonlinear effective potential at the proton. Both
phonon spectra and 1ines in the amide sequence of acetanilide exhibit a complex
pattern of spectral shifts at low temperatures (Johnston, (7)). The pattern of
these shifts indicates the presence of coupling between proton vibrations, acoustic
phonons and excitations of the C=0 anc C-N bonds. At the same time the evidence
indicates that the effective potential energy of the proton 1s & double well. The
classical or semiclassical dynamics of such nonlinear systems are known to be very
sensitive to driving fields at particular frequencies. Because hydrogen bonding 1n
crystalline acetanilide is a good qualitative model for hydrogen bonding in
proteins, we should expect to see spectral features in substances composed of alpha-
helices similar to those found 1n acetanilide crystals. This observation would have
definite implications for the dynamics of protein molecules. In particular, many of
the normal modes of a protein molecule are determined by parameters arising from the
hydrogen bonding. If the (-C=0-- H-N-C=) system shows high sensi{tivity to driving
electromagnetic fields in the millimeter wave range, this should be reflected in the
dynamics of the whole molecule. As an {nitial step, we have chosen to investigate 2
simplified model proposed by Davydov (8) of interactions between amide-1 excitations
and acoustic phonons in the protein alpha-helix.

A major thesis investigated fs that the principal response of bfological
macromolecules to miilimeter wave radiation involves the excitatton of acoustic
phonons or low frequency vibrations with characteristic frequencies less than 6000
GHz (200 cm-1.) The biological importance of defining the properties of these modes
and their interaction with electromagnetic radiation is stressec by indications of
their role 1n the activity of enzymatic proteins (Peticolas, (9), Northrup, et al ,
(10)) and in directing the paths of hydrogen exchange in proteins (Sheridan, et al
(11)). As a result, the understanding of the low frequency dynamics of proteins anc
polypeptides 1s the subject of much current experimental (Peticolas, (9)) and
theoretical research (Northrup, et al, (10) Sheridan, et al, (11), McCammon and
Karplus, (12) Pain, (13), Go, et al, (14), Brooks and Karplus, (15), Davydov,
(16,a,b), Hyman, et al, (17), Scott, (18), Lomdahl, (19)). The majority of the
theoretical investigatfons have concentrated on analyzing the low frequency dynamics
in terms of such weak interactions as hydrogen bonding, torsional twisting, and van
der Waal's forces. Only a few of these studies included a nonlinear coupling
between the low energy acoustic phonons and the amide-I vibrational excitons.

Part II of this report covers our investigation of the dynamics of the Davydov
model in both short and long chain alpha helices while Part IIl summarizes results
of molecular orbital calculations of the exciton-phonon coupling tn the formamtide
dimer. Our investigation of these two aspects of the Davydov model has provided a
qualitative understanding of oscillatory modes of proteins which correspond to the
millimeter and submillimeter regions of the electromagnetic spectrum.

II. INVESTIGATION OF THE DYNAMICS OF THE DAVYDOV MODEL
A.  BACKGROUND

One of the central issues of bioenergetics 1s how energy arising from chemical
transformations is transferred within enzymes and other protein molecules (Green,
(20,21)). The amide-1 vibration (C=0 stretch) has been proposed as a possible
vehicle for energy propagation in biological systems (Green, (21)). A linearized
model of amide-I excitation predicts decay to thermal vibratfons within a few
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picoseconds. This 11fetime seems to eliminate propagation of amide-I excitatfon as
an intermediate step in energy transfer. Most chemical processes in enzyme systems
involve conformational changes which proceed on relatively leisurely timescales-
microseconds or longer.

Davydov (8) has proposed a potential resolution of this disparity. He
suggests that the nonlinear character of the interatomic forces can stabilize the
amide-]1 excitations. According to this model, propagation of an amide-1 excitation
is analogous to an exciton in a one dimensional solid. Excitons are coupled to
longitudinal sound waves in this system. This coupling of phonon and exciton fields
produces a dynamically stable excitation which propagates as a solitary wave. In
essence, the phonons provide a potential well that prevents exciton dispersion.
This balance between dispersion and wave steepening {s familiar to students of
solftonic phenomena. 1n the continuum approximation, the dynamics of the solitary
wave are described by the nonlinear Schroedinger equation, which has solttonic
solutfons. Davydov's analysis, based on the continuum approximation, demonstrates
that this mechanism could stabilize molecular excitons over periods of milliseconds
or longer (Davydov, l6a).

Davydov, Eremko and Sergfenko (22) derfved a phonon-exciton model which more
accurately represents the three dimensional arrangement of hydrogen-bonded chains
along the protein., Extensive numerical calculations based on this model confimm
that Davydov's continuum approximation is qualitatively correct for alpha helical
chains containing several hundred peptide residues. A1l models exhibit solfitary
waves, which form at some threshold value for the coupling between excitons and
phonons. Further, the solitary waves are very stable and closely resemble solitons.

There are several 1ssues which need to be resolved before Davydov's model can
be rigorously applied to proteins in a l1iving cell. These issues fall {nto four
categories. The first issue 1s the range of chemical or dynamical phenomena to
which the Davydov model can be applied legitimately. The second issue is whether a
model related to the Davydov model may be useful for structurally complex proteins.
The third issue 1s the relevance of the parameters used in previous modeling
efforts, The strength of the exciton-phonon coupling 1s particularly significant.
The fourth issue is the behavior of the model at temperatures commonly found 1n
1iving organisms.

Davydov originally proposed his model to account for muscle contraction -
(Davydov, (8)). Because muscle contraction is thought to involve a conformational
change in a long-chain protein, we must determine whether the Davydov model allows
for a substantial portion of the excitonic energy to be transferred to phonons or
large-scale nuclear motions. Unfortunately, numerfcal calculations show that only a
small portion of the total energy resides in the phonons associated with the
solitary wave (Scott, (18)). Even though the Davydov model closes the gap 1in
timescales between dispersion of amide-I excitation and conformational changes in
proteins, the gap in energy remains quite wide. Because energy transfer from an
exciton mode to a highly excited phonon mode involves many quanta, the probability
of energy transfer from an exciton mode to a highly excited phonon mode remains
quite small (Ovchinnikov and Erikhman, (23)). Nevertheless, the Davydov mode!
remains a reasonable candidate for the transfer of bond energy.

The necessity of application of the Davydov model to a wide range of protein
structures arises because only a small fraction of the proteins 1n 1iving systems
exist as long alpha-helical chains. More general models of excitonic propagation
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are necessary for the highly folded forms which are found 1n enzymes,
microfilaments, and chemical receptors. Lomdahl (19) has proposed one such mode).
This model reduces to the Davydov model for short alpha helical segments,

The dynamics of the Davydov model are very sensitive to the effective force
represented by the phonon-exciton coupling. Previous numerical studies have taken
the value for the formamide dimer calculated by Kuprievich and Kudritskaya (24) as
representative. This value was obtained from an ab-initio self-consistent field
computation. The authors did not report on the details, which is unfortunate
because such calculations are quite sensitive to choice of the equilibrium geometry,
basis sets, or configuration interaction level. Our calculations indicate the value
reported by Kuprievich and Kudritskaya may underestimate the true value by as much
as a factor of two. We conclude that an accurate assignment of the coupling
constant remafins to be established (See part III, below).

Another related problem arises in the extrapolation of experimental results
obtained with hydrogen-bonded molecular crystals, such as acetanilide (Careri, et
al » 25)) to support the Davydov model for proteins. The Davydov model includes
only exciton-phonon coupling terms which are 1inear 1n the phonons. Many of the
models of propagation of excitons in molecular crystals fnclude coupling terms which
are quadratic. These terms are necessary to account for phonon frequency changes
which may be present in addition to changes in the equilibrium positions of the
molecules (Munn and Silbey, (26)). Spectrographic results obtained at cryogenic
temperatures (Johnston, (7,a,b)), indicate that the phonon frequency in acetanilide
s shifted by a change in the position of the proton in the hydrogen bonds of
crystalline acetanilide.

The thermalization problem has been addressed by Davydov (Davydov, (27)). By
using a density matrix approach, he has been able to show that the effective phonon-
exciton coupling constant {s decreased by the presence of thermal phonons (Davydov,
27, 28), The magnitude of this effect remains to be computed. 1In fact, there 1s no
conclusive evidence, either theoretical or experimental, which would indicate
whether Davydov solitons exist at physiological temperatures. Our results indicate
that thermal effects may prevent the formation of Davydov solitons in vivo .

B. THEORETICAL DERIVATION OF THE MODEL

Davydov's original model (Davydov, (B)) is a chain of N molecules along the z-
axis. The equilibrium positions are given by:

z, = nRo + u (1)

o n

where R, 1s the equilibrium distance between molecules and u, Is the displacement of
the nth molecule from equilfbrium, The Ham{ltonfan operator for excitons (amide-I
bond excitations in the alpha helix) may be written:

e n+1'n n n+1) (2)

In this formula & 1s the molecular excitation energy and J 1s the energy of
resonant interaction of neighboring molecules. These quantities may be described in
terms of a two-level model of the amide~l bond. (Fedyanin and Yakushevich,
(29,a,b)). In this representation the states of the bond are denoted 0 and f, The
excitation energy of an isolated molecule 1s written as € .

+ + +
z - +
ey = BIPLP - JE(Fy Py ¢ PP

. R e

Sy

A oy =

T T YD SR MY R AP TN P T 1n T AT L

e _w




-~
Then:
L = be+2D; D = <f°|Vn.n+1|f°> - <00|Vn,n+1|00>
(3)
J = <Of|V, 4 |FO>
We may also write:
2
= (1) (8 (5)
I ) ()
where d 1s the dipole moment of the molecules. The operators P and P * are the
annhilation and creation operators satisfying the Pauli commutation re?ations:
p*y - +
LA énm(l-zpnpn)
PoePpi = 0 (5)
2 _
Pa- = 0.
The phonon Hamiltonian has the form
A V2 (6)
hph 2™ . * Zi'in” Un-1
where p, 1s the momentum conjugate to the displacement u,:
Cups P 3 = 1RE oo (7)
If the mass of the molecule is M then
v = M = (M2 /(R 2 (8
where w is the elastic coupling constant of the chain and v, is the sound velocity. .
The dispersion relation for phonons is given by
g =2v sin(qR /5) | (9)
where q 1s the wave vector and f.q fs the phonon frequency. The interaction of
excitons with phonons {s given by
+
Hint © xgpnpn("n+l - Upoy) (10)
where X 1s the exciton-phonon coupling parameter. The total Hami{ltonian for the
model 1s
Hsol : Hex * th * H'int . (n y
A particular solutfon for the time-dependent Schroedinger equation associated with 3
Hgo1 15 given by the following wave function: :
v (t)> = £1C (t) expia(t)}P,]0> : (12)
n
6 f




In this expression C (t) is the probability amplitude of an exciton occupying rite
n at time t. Conservation of energy implies the normalization condition

jc (t))2 =1, (13)
n n
The operator
o(t) = ifnzten(t)pn - rn(t)un] (14)
n

is derived from a coherent state representation for the phonons. This follows from
the relatfons:

. .
un = é( /ZMNaq)% (bq + btq) exp ('Inq)
(15)

P

. 5 4 .
; -1L(thH/ZN) (bq b-q) exp (ing) .

Substitution of these identities into the expression for (" (t) gives an expression
of the form

] - +. .
exp| /'h('--qu(t)bq + Z;(t)bq)! (16)
where

z_ = (ﬁ/ZMNA )%zfn exp (ing) +

N “gon (17)

3. .
i(ﬁ: M/2N)*c:  exp (ing) .
q ph

The properties of the coherent state representation imply that the functions
TL(t) and f3,(t) represent the average momentum and displacement respectively
of the nth molecule.

Explicit expressfons for the functions /5n(t).77£(t) and C,(t) can be derived
via Hamilton's canonical equations applied to the energy functional. The energy
functional is defined as follows:

= = l 3
Fe<H o> <?S(t)lH.¥s(t)> . (18)

We may calculate F from the definitions:
- 2 *
F = Aﬁlcn(t)l - Jﬁ(c;+1(t)cn(t) + Co (B)CH(t)

+ (gﬂ)zni(t) + w:an(t) - en.](t)l2
n 2n

+ xilcn(t)lzl€n+1(t) - 8,(th (19)
n

The canonical Ham{lton's equations

W (1) = 3%‘- B (t) = n (t)/M (20)
1]
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yield the fdentify

N M —3%—— = (21)

Rl (t) + g (1) = e (1)) +

B, (012 - 1 (014

If we write the phonon energy
1.2 W, 2
2M§Tn(t) + leﬁn(t) - En_q(t)] (22)
then Schroedinger's equation implies

i?bcn(t) af

5t aCr(1)
e+ Wie (1) =g (001 C (t) -
(B)
JIC, 1 (t) + €y (t)]

Equations (21) and (ZB3) describe the dynamics of a single chain,

The equations for a single chain may be generalized to the case of three
interacting chains as in a protein alpha helix. In this model, resonance
{nteractions may occur along the protein helix. Adding these interactions to the
model yields a system of coupled equations in which the dynamic variables a-e
indexed by spine number as well as position along each hydrogen-bonded spine.

Our calculations are based on a coupled system of ordinary differential
equations, obtained as outlined in the previous section. Except for choice of
boundary conditions, our procedures are formally equivalent to those of Hyman,

McLaughlin and Scott (17)., The ends of the helfx are not mechanically constrainec.

The complete model is given by the following system of equations

e )¢

(Ener,i = Bp i) )

idC . . 2

- 0.058 (Cpq i * Cpay,i) ¥ 0-092(C, 40y * Gy iy)

-8 .)C

+ 0.372 (1010x)l(1-6:) (8na1,i = Bn,i'Cn,1

n n
vl =gg) (e = gy g)C 5t (108 ey 5 X
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i : ) (24)
dtlz - n"'],\ n,i
n 10
| + (1-50) - 5n-1,1) +0.132(10 5,) «x
| 0-e") (1-¢") (ic 2 ey o1
5 CN t) Lilhay g 17 - n-1,i'
n o 2 P g ¥
UG G T N T R I1Ch, i
0, e G G G

We have normalized the time variable in these equations by setting t' = (v:/M)I/2 t.
! The quantities 547 8N" account for the boundary conditifons at the n =0 and n = N
ends of the helix respective1y.

, For the computations on short alpha helices, one quantum of amide~] excitatfion é
§ energy was assumed to be located at the (0,1) position at the initiation of the
simulation. No provision was made for random motions due to thermal disorder during
; the course of the computations. As {n the work of Scott (18), the only free j
i parameters of the model are the number of peptide residues in the alpha helix and
¢ the nonlinear coupling coefficient between exc1t?85 and ph°"985 During the Bourse
i of the computations, we used values of 0.2 X 107*5 0.4 X 107*7 and 0.6 X 10~ 1
Newtons for chain lengths of 18, 24, 27, 30, and 60 peptide restdues. ]

For the calculations on the long alpha helices one, two and three quanta
fnitfalfzations for the exciton energy were emp1o¥8d Chain length was {80 :
residues, coupling constant ranged from 0.5 X 10 Newtons to 3.0 x 107*Y Newtons. - |
Calculations were carried out for the chain 1nitfally at rest and for phonon motion ”
simulating a temperature of 300° Kelvin.

The resulting systems of differeniial equations were solved on a VAX 11/780
using double precision arfthmetic. All1 integrations were performed using a third-
order Adams-Bashford-Moulton predictor-corrector method (Shampine and Gordon, (30)), ]
The code was set to maintain a relative error of 0.000001 at each time step during
g the computation. Computation of the total probadbility of bond occupancy

1
P=2, A, 2

.~

served as an independent check of accuracy. In every computation P - 1 was
maintained at a value less than 0,00001.




C. RESULTS

1. SHORT ALPHA HELICES

The total phonon energy was plotted as a function of time in order to examine
the energy exchange between excitons and phonons. Examination of the plots for the
fifteen combinations of chain length and coupling constants described above shows
that several time scales are present:

a) Short period oscillations (about 3-6 terahertz). These may be seen as
transient bursts which recur at perfodic intervals.

b) The time interval between the appearance of the bursts is roughly
proportional to the chafn length. The duration for each burst appears to be
independent of chain length, Figures 1-3 show plots of total phonon energy for
chain lengIBs of 18, 27 and 36 residues. The high_IEequency oscillations recur
at 3 X 10 5f50nds for chain length 18, 4.5 X 10 seconds for chain length
27 and 6 X 10"*“ seconds for chain length 36.

c) Intermediate perfod fluctuations (500 gigahertz to 1 terahertz). The time
period for these fluctuations is proportional to chain length. Intermediate
period fluctuations are marked in Figures 2 and 3,

d) Long period fluctuations (100 gigahertz). Long period fluctuations are
seen for chain lengths of 27 and 36 residues. The clearest example may be seer
1n_§6gure 2 for a chain length of 27 residues, with coupling coefficient (.4 X
10 Newtons. This oscillation persists for many cycles in the original
record from which the figure 1s extracted.

Reordered according to frequency, the four separate timescales observed are:
a) Fast oscillatfons, 3 to 6 terahertz, occuring in bursts,

b) Intermediate fluctuations, 500 to 1000 gigahertz.

c¢) Recurrence of bursts, 200 to 500 gigahertz.

d) Long period fluctuations below 200 gigahertz,

Examination of the modules of the Fourier transform of the total phonon energy
confirms these observations. As the chain length {s increased, the short perioc
oscillations become less significant and the long period oscillations more
significant. This trend is shown {n Figures 4 and 5. The division between the
timescales {s seen most cleariy for a chain length of 27 residues.

Phonon Spectra

Because phonon energy in an actual protein alpha helix s not easily subject to
direct experimental observation, we also computed the TI(t) momentum expectation
function for selected residues along the chain. The modulus of the Fourier
transform of TT(t) gives the phonon spectrum, as may be seen from equation
(15) and the relation T, (t) = <Y (t)[p,| ¥ (t)> (See Haaken, 31), In order to
analyze the collective modes, we evaluated ihe sum of momenta for resfdues 1, 2 and
3 and the sum of momenta for residues [n/2), [n/2) - 1 and [n/2] ~ 1 and [n/2) - 2,
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Samples of the momenta plots are shown in Figure 6. We al1so computed the
modulus of the Fourfer transform of each momentum plot. Plots of amplitude versus
frequency are shown in Figures 7, 8 and 9. Each of the plots consists of a sertfes
of well-defined peaks. These peaks correspond to the normal modes of the
corresponding 1{inear chains, and follow the same dispersion relation as given 1n
equation (9),

2. LONG ALPHA HELICES

Our finding on long alpha helices are summarized in Figures 10-17, (Each of
these plots required more than 10 hours of CPU time to produce.) As may be seen
from Figures 10, 11 and 12, representing evolution of probabflity of exciton
occupation subsequent to inftfal excitations of one, two and three quanta of amide-!
excitation energy placed {n the end peptide groups of chains at 0%elvin, soliton
formation 1s a function of excitation level. Even in the case of two or three
quanta, there 1s a significant probability that a fast-moving dispersive wave wil}
form. This may be seen by the sharply-defined ripples which form upon reflection of
the wave from the end of the chain. Another branch of the dispersion of
excitations, which 1s indicated by waves similar to but moving more slowly thafothe
main solitary wave., Note that the coupling constant in this case 1s 0.5 X 10
Newtons, & value which {s reported by Scott (18) to be in the middle of the range of
coupling constants at which solitary waves form,

The second series of Figures, 13, 14 and 15, {llustrate the effects of high
coupling constants. Figure 13, which represents evolution of exc1toT probability in
a chain at 0 degrees Kelvin with a couplfng coefficient of 1.5 x 10 ONt, shows thet
a siowly-moving solitary wave may form at a lower excitation level in the case of
stronger coupling. Figure 14, also represent1T8 exciton evolution at 0 degrees
Kelvin but at a coupling constant of 3.0 x 10 “~Nt, shows that at very high levels
of excitation, a randomly-moving exciton forms. This is familfar to solid-state
physicists, in that phonons scattering from the exciton push 1t from site to site.
Figure 15, representing evolution subsequent to a two quanta excitatfon, shows
eventual trapping of the exciton at the end of the chain. A similar phenomenon has
been reported by Scott (18), with the major difference that the exciton did not
initially leave the end of the chain,

Figures 16 and 17 {llustrate the effects of thermalization. Figure 16, shows
the evoluttion subsequent to a two quanta excitation 1n a chafn with thermal phonon
motion representing a temperature of 238° Kelvin. The excitons disperse rapidly,
within 20 picoseconds. Figure 17 shows exciton evolution subsequent to three quanta
excitation 1n a chain with a phonon temperature of 300 degrees. Dispersion is also
rapid in this case.

D. DISCUSSION
1. SHORT ALPHA HELICES

We believe that the full range of phenomena observed during the course of our
mode) ing studies requires a more detatled analys{s than the passage to the continuum
1imit which is common to the literature on the Davydov model (Davydov, 8, 16, 27,
28, Scott, 18). A more accurate treatment should follow the spirit of Toda's
analysis of nonlinear lattices. (Toda, 32).
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Figure 10,

PROBABILITY

Plot of probability of exciton occupation. Horizontal axis is

position along a chain of 200 residues. Each trace represents a
time increment of approx1mate1x18.4 picoseconds. Phonon-exciton
coupling parameter 1s 0.5 x 10
excitonic energy propagates as a dispersive wave.

TIME (TRACES AT 4 X 10~ '3 SECOND INTERVALS

L
t
0

100
RESIDUE NUMBER

Nt. Note that most of the



TIME (TRACES AT 4X 10~ '3 SECOND INTERVALS)
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Figure 11. Plot of p{gbab111ty of exciton occupation. Coupling constant of
0.5 X 10" *“Newtons, two quanta initfalization. Note the presence
of both a solitary wave and a faster-moving dispersive wave.
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Figure 15. Evqutionlsf exciton occupation probability. Coupling constant of
3.0 X 10°*Y Newtons. Two quanta initfalization. Note that a self-
trapped exciton is attracted to chain boundary.
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Equations (24) may be simplified by neglecting coupling terms of small
magnitude. In the first equation, this {ncludes the observation that only the
hydrogen bond on the C<0 side of the peptide unit will Influence the amide-I energy:

(25)
idl_ - 1 . .
0{3' = ¢.372(10 O*)[(‘n+1.i' 6n.i)cn.i * (En.i' ‘n-1,1)cn-1.i'
- 0.058(Coyy 5+ C g i) 4 0.092{C, iy * Cp soy)
V4
d e _ . .
51 2 9. .- .- E : 10 . - ' T
Tt'.lz— 2-0,1 en+],1 n'],1 + 0.]32(]0 x)[cn+].1! + ‘Cn-1,’i' J

For the sake of simplicity, we have not included the end conditions {n these
equations. These equations, which have several features 1n common with Flaschka's
equations for the Toda lattice (Flaschka, 33), may be treated as matrix equations.
To begin the analysis, note that to the first order the equations for the excitons
and phonons are uncoupled. The equations for the excitons may be written as a
system of 1inear autonomous equations:

1/dA/dt' = KA, (26)

with solutfon A = exp({K)A,.

The phonon displacement is given {n turn by an approximate equation:
12 7dt12 = kb+ F, (27

where n 1 is given by 1B, 4+ B, ;) and F is the nonlinear term given by the
excitons. The solution of (%7) ?s given by the formula

B (t) = fytexpl-1K(t-DIF(7)aS (28)

This scheme may be continued self-consistently to improve the estimate of the
evolution of the exciton probability amplitude, given by equation (27), but equation
(28) accounts for the major features we have noted in the results sectfon. For
example, the average 1ifetime of an exciton at a site of the chain {s about 1.6
picoseconds. An exciton moving along the chain will exctite 1.6 phonons most
strongly when 1t 1s near one of the ends of the chain. This {s the origin of bursts
in the phonon mode at about 6 THz. Other fluctuations are due to resonances between
phonons and the perfodicity of the excitons. The long period observed for the chain
length of 27 residues is due to transfer between even and odd-numbered spines of the
alpha helix.

Because the calculated phonon spectra do not reflect the frequency shifts
observed in acetanilide crystals, we suggest that the interaction term of the
Hamfltonfan should include a quadratic term. Writing
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PSP

) - ent
Hint = ;Pnpn(un*l " Upy)
+ 2 (29)
+ G;PnPn(un+1 - upq)
would yield a new expression for the energy functional
< A 2
' o= el 4 -
F' = F + Gblcnl [-n+](t) bn_](t) ] (30)

n
Equation (23) would be modified by addition of a term

G 2 , ‘:
%rtﬂcn+1! (Enap(t) = £ 011 = 10 q(8) i = g (2 (31)
Similar modificatfons may be made in the three-spine model.
2. LONG ALPHA HELICES

Mathematical analysis of the complicated dispersion observed for a single quantum
excitation 1s not yet complete. The reason for soliton formation in the case of two
and three quanta excitation may be seen from the fact that phonon formation goes as
the square of the number of excitons and thus the "feed-back™ term fn the exciton
evolution equation (25) increases as the cube of the number of excitons. The
qualitatibe change 1n exciton dynamics observed when the coupling constant reaches
3.0 X107*YNt 1s also due to a qualitative change in the "feed-back™ term. In this
case, the coefficient of the feedback term exceeds unity.
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IIT CALCULATION OF THE EXCITON-PHONON COUPLING CONSTANT
A.  BACKGROUND

The calculation of the non-linear coupling between the vibrational excitons
localized in amide-1 bonds and the phonons in the hydrogen-bonded "spines" of a
polypeptide alpha-helix {s important to the understanding of the propagation of
undispersed amide-] vibrational excitons along these "spines™. An undispersec
exciton which propagates through an interaction with phonons 1s also defined as 2
Davydov solfiton. In a numerfcal analysis of a polypeptide alpha-helix of finfte
length, Scott showed that a Davydov soliton can be sustainedlahen the exciton-phonor
coupling parameter exceeds a minimum magnitude of 0.35 X 10 "“Nt(18). The
question of the validity of this threshold s addressed 1n the calculations
described below.

According to Kuprievich and Kudritskaya. the exciton-phonon {nteraction
parameter consists of a resonance component (Xz) and two non-resonance components

(X, Y%, 7)(24).  The X, term can be obtained from the known magnitude of the
resonance interaction between the transistion dipoles associated with the amide-1I
vibratign in alpha-helical polypeptides (44). In this manner, Scott derived a value
of 107 Newtons for X,(18). The non-resonance components are best determinecd from
a theoretical treatment of exciton-phonon coupling at the microscopic level. This
treatment involves the use of the quantum mechanical ab initio self-consi{stent fielc
(SCF) molecular orbita) (MO) procedure. The exciton-phonon coupling terms and the
application of ab initio SCF MO theory to the calculation of these terms are
discussed in greater detail in Section III B. Section III C presents our
preliminary calculation of X1+ and that of Kuprfevich and Kudritskaya (24) for the
simplest hydrogen-bonded polypeptide - the formamide dimer. Conclusfions are
presented in Section III D.

The Hamiltonian for the {interactfon of vibrational excitons with acoustical
phonons 1n a discrete chain of N molecular units forming a regular one-dimensional
lattice was derived by Kuprievich and Kudritskaya (24, 34), in a form differing
s11ghtly than that reported by Davydov.

= N + + - - -
Hint = 2 m=1PnPmlX1 (U1 )Xy Cug= Up))
+ 2#FZ(P;Pm-l*P;-IPm)XZ(“m'"url)
In this expression, P * and P, are the creation and annihilation operators of

vibrational excitation in Qhe unit m, U, {s the displacement of this unit from fts

equilibrium position, X * and X,” are the parameters defining the non-resonance
interactfion of a unit v}th its nefghbors, and X, 1s the parameter defining the
resonance interaction for two ne1ghbor1ng units in a chain. Note that the terms in
the first sum with Xl' at m=1 and with X", at m=N should be omitted, because both

(32)

terminal molecular units have only one neighbor.
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The explicit formulations of X X ~, and X, for a dimeric group consisting of
peptide groups m and m+l are as follows (24, 34):

X, * = (820 3y ey D02 IR, e (33)

X)" = (/2w DO Ep, my1/d Oy 2V /2R, oy (34)

Xp = (B/2w) 3 ('Ep e 1703010 7R, e (35)
where w 1s the intramolecular amide-1 vibrational frequency, , m is the distance
or hydrogen-bond length between groups m and mtl (See Figure l&a), m1 1s the

interaction energy (or total energy in the Born-Oppenheimer approximationl35)) of
groups m and m+l, and Q; is the normal mode coordinate for the amide-I vibrations in
groups f=m and mtl. Since the second derivatives of the total energy of the dimer
with respect to 1ts vibrational normal coordinates are proportional to the harmonic
force constants for these modes, the coupling parameters in Eqs. (33) - (35) can be
viewed as the first derivatives of the harmonic force constants for the amide-1I
vibrations 1n the dimer with respect to the intermolecular distance R , m+l. Thus,
the acoustical phonons of the alpha-helix which are defined pr1nc1pa1Ty g; éhanges
in 1 (1.e., changes in the pitch of the alpha-helix (24, 34)) are coupled to
the amide=1 vibratfonal excitons.

As stated 1n the Introduction, a value of 10'12 Nt for X, can be derived from
the known magnitude of the resonance interaction between the amide-1 vibrational
transition dipoles (18). Kuprievich and Kudritskaya argue that X, 1{s negligible

with respect to X * (28). The principal reason {s that the dominant contribution to
the amide-1 vibrational normal mode in a peptide group is the C=0 bond stretching
motion (24, 36, 37). As a result, the amide-] vibration of group m will be much
more perturbed than that of group mtl by changes 1n Rm’ m+1s This observation is
clearly seen in Figure 18a. The major objective of our analysis of the exciton-
phonon coupling 1n poliypeptides will therefore be the calculation of Xl*.

B.  QUANTUM-MECHANICAL CALCULATION OF THE NON-RESONANCE EXCITON-PHONON INTERACTION
PARAMETER X, .

The calculation of the interaction energy of the two peptide groups (Em. m1’
as a function of thg intra- and inter-molecular coordinates 1s fundamental to the
determination of Xl . In the Born-Oppenheimer or adiabatic approximation (35), the
interactfon energy is equivalent to the total energy (E) for the system, which is
calculable using quantum mechanical ab_initio self-consistent field (SCF) molecular
orbital (MO) procedures. The details of these procedures and their application to
the study of the electronic structure of atoms and molecules are well-covered by
Schaefer in his book (38) and the references therein.

The mapping of the £ surface for a dipeptide system as a function of fts intra-
and inter-molecular coordinates is a formf{dable task. However, as outlined by
Kuprievich and Kudritskaya (24), one can obtain a crude estimate of Xy~ by the
following procedure. 1) Investigate the simplest system that contains two peptide
groups connected by a hydrogen bond, i.e. the formamide dimer shown in Figure 18b,
2) Determine an equilibrium geometry for the dimer. 3) Approximate the amide-1l
vibrational normal mode as only a C=0 bond stretching motion. As a result, the
in Eq (33) becomes ¥JK/w (24), where Jis the change in C=O bond length away from
1ts equilibrium value (positive/negative § signifies an expansfon/contraction of the
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Figure 18 (a).

Figure 18 (b).

Figure 18 (c).

Structure of a chafn of hydrogen-bonded peptide groups.
Unspecified molecular fragments are designated R in the
figure. Note that the integer m represents one peptide group.
The hydrogen bond length between groups m and m+l {s {ndicatec

by Ry, mel*

Structure of the formamide dimer and numbering of the atoms
used 1n the calculations.

Description of the vibrational normal mode in the formamide
monomer which contains the stretching motion of the C=0 bond.
This figure 1s taken from Ref 37, and the direction and length
of the arrows represent the activity of the given atoms in the
normal mode.
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C=0 bond), K 1s the harmonic force constant for the C=0 bond stretching motfon, anc
w is the amide-] frequency. Eq. (33) then takes the form

+
X, = (Kw/2X) JK/ IRy mi1 (36)

where K = 315/)5'2. 4) Ca‘lcg'late E at three different values of ¥ and estimate

K =)'E/)§2 by A(AE)/(8§)“. 5) Calculate K at different values of Rn, m+1 8N4 4
estimate 3K/ 9 m+ OY 8K/OR, - oy In summary, a crude determination of X

for a polypeptide chain can be made %y calculating the total energy of the formamide
dimer in different geometrtes and then taking the appropriate numerical derivatives.

Both Kuprievich and Kudritskaya's (24) and our ab infitfo SCF MO calculations of
the total energy of the formamide dimer were performed with the minimal atomic
orbital basis set composed of 36 Slater-type orbitals (STO), each being approximatec
by 3 Gaussfan functifons (3G) (39). It is stressed that the STO-3G basis set {s good
only for qualitative analyses of the geometries of amide compounds (37, 38). For
example, an energy-minimized geometry of the formamide monomer calculated using the
STO-3G basis set was not in complete agreement with the experimentally determined
geometry for the molecule (37). The major differences were that the calculated
geometry was slightly non-planar, §h11e the observed one was planar, and that the
calculated C-N bond length was 0.1A longer than the observed one (see Table I and
Ref. (37)). Although the STO~3G basis set has {ts 1imitations with regard to the
accurate study of molecular properties, SCF convergence was achieved for all 6 of
geometries of the formamide dimer, and the cost per calculatfon was about 12 minutes
of CPU time on the VAX 11/780. Thus, the STO-3G basis set allows one to make a
qualitative estimate of X; with the least amount of computational effort.

The specific differences bet,een Kuprievich and Kudritskaya's (24) and our
approach to the calculation of Xy are the determination of an equilibrium geometry
for the dimer and the manner 1n which § was changed. The equilibrium geometry of
Kuprievich and Kudritskaya (24) was found as follows. The relative arrangement of
nucle! in each of the dimer molecules was assumed to be the same as observed in a
free formamide molecule (see Table I). The mutual orientation of the two molecules
was constrained so that the atoms C;=0,-~--Hs~N, lay on a straight 1ine (see Figure
18b). The equilibrium intermolecular 5istance was taken as that corresponding to
the minimum total energy along the Cl=01--H4-N2 axis.

Our equilfbrium geometry was derived from an energy minimization of the
complete geometry of the dimer. This calculatfon took approximately 10 hours of CPU
time and was accomplished utilizing energy gradient and optimization routines. The

s only constraint on the geometry optimfzation was that the dimer had to be planar.
5 This constraint was implemented because the observed geometry of the formami{de
: monomer is planar (see Table I and Ref. (40)).

The change in ¥ should correspond to the motion of the carbon and oxygen atoms
in the C;=0, bond stretching motion. Kuprievich and Kudritskaya (24) chose to move
only the 0, atom in increments of -0.02 Bohr, so that E was calculated at the points
$=0.0, -0.02, and -0.04 Bohr. The reason for,the choice of two negative values of
is that the ghserved C=0 bond length of 1.243R (41) used as their equilibrium value
1s longer than the one galculated using the STO-3G basis set (1.219A) (see Table I).




We elected to move both the 0; and C, atoms in increments of 0.0l 8ohr, so that
E was calculated at §=0.0, 0.02, and 0.04 Bohr. Note that the molecular fragment
attached to the C; atom (atoms Nl' Hl ’ Hz. and in Figure 18b) was also moved
rigidly with the C; atom. Our motivation for moving both the O, and C, atoms was
that this motion 1s in better agreement with the amide-1I v1brat}ona1 normal mode for
the formamide monomer shown in Figure l8c.

C. RESULTS

Calculated and observed equilibrium internal coordinates and ground state
dipoie moments for the formamide dimer and monomer are given in Tag1e I. The
calculated ground electronic state properties used to determine X, for the
formamide dimer are presented in Table II. Table lII 1ists Kuprievich and
Kudritskaya's (24) and our calculated values of X, for different harmonic force
constants for the C=0 bond stretch vibration in the formamide dimer and monomer.

Equilibrium Geometry

No experimental data are available on the geometry of the formamide dimer shown
in Figure 18b. 1In order to estimate the accuracy of our energy-minimized geometry
of the formamide dimer calculated using the STO-3G basis set, we calculated an
energy-minimized geaometry for the formamide monomer, on which there {s experimentz’
data (40). As in the case of the dimer, the monomer was constrained to be planar
(designated STO~3G planar in Table I). We see in Table I that, except for the
Tonger C;-N; bond length, our calculated geometry does not differ significantly fror
the observeé geometry given in the rightmost column of Table I, or from the geometry
calculated using the ab_initio SCF MO procedure with the more elaborate 4-31G split
valence basfs set (42). We conclude that our calculated equilibrium geometry for
the formamide dimer 1s reasonable with the exception of the Cl-N and §2-N2 bond
lengths. Most importantly, the calculated Cl=0 bond length of i.218 in the
formamide monomer is 1n very good agreement with observed one at 1.219 % 0.012 X
(40).

The equilibrium geometry of the formamide dimer constructed by Kuprievich and
Kudritskaya (24) s gfven in the column headed by STO-3G + Obs. The {nternal
coordinates for the formamide molecules {n the dimer were taken from the
experimental {nvestigation of the formamide monomer by Kurland and Wilson in 1957
(41). Although there is a slight difference in the C,=0, bond length, Kurland and
Wilson's (41) results agree with the more recent spectroscopic study by Hirota, et,
al in 1974 (rightmost column in Table I) (40). The hydrogen bond length (rq ...H,)

§a1cu1ated by Kuprievich and Kudritskaya (]1.853 R) (24) and the present work (1.851
) are essentially identical. However, we calculate the 0,---H,-N, bond angle to be

s118ht1y bent at 175° while Kuprievich and Kudritskaya (24) constrained it to be
1807, This difference should not be too significant, because the potential energy
curve associated with the bending of hydrogen bonds {is very shallow (24).

The Nonresonance Exciton-Phonon Interaction Parameter, xl+

The calculation of XI by Kuprievich and Kudritskaya (24) and the present work
can be followed by reading Table II from left to right. Note that R in Table II 1s
equivalent to Ry ) 1n the text, We see that the values of K calculated by




Kuprievich and Kudritskaya (34) (1518 Nt/m at AR=0.0 Bohr and 1428 Nt/m at
AR=0.66653 Bohr) are less than that of the present work (1585 Nt/m at AR=0.0 Bohr
and 1578 Nt/m at AR=0.66653 Bohr). Furthermore, the change 1n K with respect to the
change in R {s calculated to be much greater by Kuprievich and Kudritskaya (-90
Nt/m) (24) than the present work (-7 Nt/m), In other words, Kuprievich and
Kudritskaya (24) have calculated a greater perturbative effect of the motion of the
H4 atom (the acoustical phonon) upon the C;=0, bond stretching vibration (the amide-
I exciton) than is determined by our computations. This result 1s summarized in
Table I1I which reveals the approximately one order of magnitude difference between
the nonresonance exciton-phonon °°"p]1ff parameter calculated by Kuprfevich and
?gQ{its?aya (24) (-2.65 to =3.64 x 10 "*Nt) and the present work (-0,20 to -0.27 x
Nt).

D. CONCLUSIONS

According to Scott (18) Davydov solfton formation 1n an alpha-helix is possible
only when the magnitude of the nonresoTince exciton-phonon interaction parameter
exceeds a threshold equal to 3.5 x 107“*Nt. The numer1ca1 analysis of Kuprievich
and Kudritskaya (24) shows that the magnitude of X, can exceed such a threshold
(see Table III). This result would provide suppor% of the existence of solitons in
polypeptide chains., However, our calculated magnitude of X * {s an order of
magnitude less than that derived by Scott (18), and it uou15 argue against the
existence of solitons in polypeptide chains,

The dfsagreement between Kuprievich and Kudritskaxa's (24) calculated value for
X,* and ours was disturbing, and so we recalculated X; using the exact procedure
o* Re 1(24). We found that Kuprievich and §udr1tskaya were in giior. Instead of 3
x 10_y]Nt, their calculated magnitude of X, should be 0.7 x 10 “°Nt. -§jthough 0.7
x 10 " Nt {s larger than our original ca]cu\ated_Tign1tude of 0.2 x 10 " Nt, it
sti1l 1s less than the minimum value of 3.5 x 10 ““Nt predicted by Scott (18) to
sustain a Davydov soliton. Thus, nefther the STO-3G calculation in Ref. (24) nor
ours supports the existence of Davydov solitons in hydrogen-bonded polypeptide
chains.

A more sophisticated ab-1nitio - SCF-TO calcu]agion employing the 4-31G basis
set (42) yielded a magnitude of 1.3 x 103Nt for X,¥ (see Appendix I). This
magnitude is less than Scott's minimum value (18), but 1t has increased relative to
the one calculated using the STO-3G basis set, Therefore, as one fmproves the
sophistication of the ab-initio -SCF-MO calculation, one would expect X | to

to increase. It is necessary to improve the sophistication of the nh;in};ig - SCF-
MO procedure, because of the complexity of the hydrogen bond {nvolved in the
exciton-phonon interaction (see Appendix I). As a result, the question concerning
the presence of Davydov solftons 1in alpha-helical polypeptides sti11 can not be
answered definitively on the basis of the quantum mechanical calculations performed
to date.
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TABLE I. (cont)

a) The structure of the formamide dimer and the numberfng of the atoms {s given in
Figure 18b. The formamide monomer is defined by the molecular fragment
composed of atoms 0y, Cy» Ny» Hys Hy, and Hy 1n Figure l8b.

b) r,, T bond length between atoms x and y; L Z angle between the x-y and y-2z
bo%ds; 4} = magnitude of the ground state éipo]e moment; (A, C( -y )=
angle between the Cy-N, bond vector and the ground state dipole moment vector.
Note that na = not available.

This work. The geometry of the formamide dimer was determined by minimizing
the energy of the molecular system with respect to the atomic coordinates. The
energy was calculated using the ab {nitio self-consistent field (SCF) molecular
orbital (MO) method with the STO-3G minimal atomic orbital basis set. Planar
means that all the atoms 1n the dimer were constrained to remain {n one plane
during the optimizatfon calculation.

Ref. 24, The geometry of the formamide dimer was determined in two parts: (1)
the internal coordinates of the two formamide monomer units were taken to be
identical and are the observed values for the formamide monomer given 1n Ref.
41; (2) the energy of the dimer was minimized with respect to the r{0y...Hy)
distance, where the C » 0y, Hy» and N, atoms were constrained to be on one
1ine. This energy was ca*cuIated us1ng the ab inftio SCF MO method with the
STO-3G basis set.

This work, See c¢) with the exception that dimer is replaced by monomer.

Ref. 37. The geometry of the formamide monomer was determined by minimizing
the energy of the molecule with respect to the atomic coordinates. The energy
was calculated using the ab initio SCF MO method with the STO-3G basis set.
The monomer was not constrained to remain planar in this calculation, and {t
was found that the minimum energy geometry was not planar with the °1'01’N1’H1

and 0;-Cy-=N;-H, dihedral angles equal to 146.8° and 22.8S respectively.

Ref. 37. The geometry of the formamide monomer was determined by minimizing
the energy of the molecule with respect to the atomic coordinates. The energy
was calculated using the ab initio SCF MO method with the 4-31G split-~valence
basis set. The monomer was calculated to be planar,

Ref. 40. A microwave spectrum of the formamide monomer in the gaseous state.
The monomer was determined to be planar.
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TABLE 1I. (cont)

a)

b)

c)

d)

e)

f)

g)
h)
1)

h M)

The structure of the formamide dimer §s given in Figure 18b. The non-resonance
exciton-phonon coupling parameter is defined in h) of Table 1II,

The change 1n hydrogen bond length (r(0-H,) in Figure 18b) with respect to fts s
equilibrium value. A positive AR reflects an increase in r(Ol-H4).

The magnitude of the change in the carbonyl bond length (r(C =0;) 1in Figure
18b) with respect to 1ts equilibrium value. Note that a pos}tive/negative €
reflects an increase/decrease of r(01=01).

The total ground electronic state energy of the dimer.

The present work is represented by P, The ab_initip self-consistent field
(SCF) molecular orbital (MO) method with the STO-3G minimal atomic-orbital
basis set was used to calculate the total energy of the dimer as a function of
OR and § . Note the following: (1) ¥ was positive, as 1t was increased in
fncrements of 0.02; (2) ¥ was fncreased by moving the 0O, atom and the molecular
fragment composed of the Cl. Ny» Hp» Hpe and H3 atoms (see text).

The work of Kuprievich and Kudritskaya 1n Ref. 24 s represented by KK, The at
initio SCF MO method with the STO-3G basis set was used to calculate the total
energy of the dimer as a function of OR and § . Note the following: (1) §
was negative, as it was decreased in increments of 0.02; (2) § was decreasec by
moving only the 0; atom (see text); (3) the total eneggy of the dimer decreases
as § decreases, because the fnitial r(Cy=0,) = 1.243 A is greater than the
optimal r(C =0}) = 1.219 A calculated using the ab-initio SCF MO method with
the STO-3G basis set (see text and Table I).

The change 1n total energy associated with the change 1n & (A€) .
The change in AE associated with A¢ .

The estimate of the diagonal force constant for the stretching of the (:1=01
bond. K =d'€/9§2% AcaE)/ ()2,
The third derivative of the total energy of the dimer which is the crucial

component of the non-resonance exciton-phonon coupling parameter (see text and
Table 111).
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TABLE I1I. Calculated values of the non-resonance exciton-phonon
coupling parameter for different diagos\a'l force cons}ants for
5 the C = 0 bond 1n the formamide dimer?’ and monomer?®

: K(Nt/m) ©’ X, (Nt x 10°%) 7
: ) D
p! KK
1150 -0.27 -3.64
(monomer, Ref. 40)€’

1380 -0.22 -3.03
{(monomer, Ref. 319

1540 -0.20 -2.72
(monomer, Ref. 24)€’

1473 =0.21 -2.84
(dimer, Ref. 24)F)

1581 =-0.20 -2.65

(dimer, This work)g)

sy




)

TABLE II1. (cont)

a) The structure of the formamide dimer 1s given in Figure 18b. The formamide
monomer 1s defined by the molecular fragment composed of atoms 0, Gy Ny» Hy»
Hy» and Hy in Figure 18b.

b) The diagonal force constant for the stretching of the C;=0; bonc.

c) Derived from spectroscopic data.

d) Calculated using the ab-initio sel f~consistent field (SCF) molecular orbital
(MO) method with the 4-31G split-valence basis set.

e)-g) Calculated using the ab-initio SCF MO method with the STO-3G basis set.
h) The non-resonance exciton-phonon coupling parameter.

Xf? %{ }Eg % -:—E. where hw = the experimental mean frequency of the

amide-1 vibration (1660 cm™> = 3,297 x 10720)),
K as defined in b), and OK/AR as defined in 1) of Table 11,

1)  The value of Xl* determined using OK/AR calculated in the present work.

J)  The value of xl* determined using AK/AR calculated by Kuprfievich and
Kudritskaya in"Ref. 24.
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APPENDIX I, The calculation of the nonlinear coupling constant (Xl*). using an
ab-initio -SCF~MO procedure with the 4-31G basis set.

The calculation of Xl+ using an ab-inftio -SCF-MO formalism with the 4-31G
split valence basis set 1s a great improvement over earlier calculations employing
the STO-3G basis set (see Section III and Ref. I-1)., However, before discussing the
results of the 4-31G calculation, there 15 one findifg to be noted concerning the
ST0-3G calculations; the magnitude of X;” =3 x 107 °°Nt calculated by Kuprievich and

Kudritskaya (I-1) is too high. We recalculated X + by following exactly the
procedure outlined Yy Kuprievich and Kudritskaya (I-1), and obtained a magnftude
equal to 0.7 x 101 1nt, Although Kuprfevich and Kudritskaya (I-1) mention that they
had SCF convergence problems (we had none), the errors in their calculation of Xy
are not clear to us. In conclusion, neiIher the STO-3G calculation in Ref. I-1 noi
ours (Section III) yields a value of IX, | which exceeds the threshold of 3.5 x 10~1!
Nt predicted by Scott (I-2). This resu}t will be discussed in detai) below.

Ab-initio ~-SCF~-MO calculations of molecular properties employing the STO-3G
basis set are crude. This fact is particularly true when treating interactions 1ike
x1+. which are associated with hydrogen bonding. The starting point for the
treatment of hydrogen-bonded systems {s to use the 4-31G basis set. It is stressecd
that this basis set is only the starting point because the van der Waals forces
which are important in hydrogen bonding are not being described reasonably until one
utilizes second and third order Mgller-Plesset perturbation theory in conjunction
with polarized basis sets of the 6-311G** type (I-3).

The ab-initio -SCF-MO calculation of xl* using the 4-31G basis set followed the
same procedure outlined for the calculation employing the STO-3G basis set: (1) use
a formamide dimer as the simplest model of the polypeptide chain, (2) calculate an
equilibrium geometry of the dimer, (3) calculate K or K as a function of R, m+1
or Ry . However, unlike the STQ-3G calculation uhicﬁzgetermined Ke=p 2t two
va1ue§'6¥ Ro...H = 0.00 and 0.35 A, the 4-31G calculation computed K., at seven

values of Ry |, = +0.05, + 0.02, + 0.01, and 0.00 f.

Calculated (STO-3G and 4-31G) and observed equilibrium geometries of the
formamide monomer are shown in the top part of Figure I-1. Note that the calculated
geometries were constrained to be planar, and the observed one was found to be
planar. It is clear that the 4-31G calculated geometry matches up better with the
observed one than does the STO-3G calculated geametry. This observation s
particularly true for the C,-N; bond length. The term (M| fs the magnitude of the
dipole moment, and €(u, :cl'Nl) 2 0 is the angle between the dipole moment vector

and °1‘“1 bond vector,

Calculated (STO-3G and 4-31G) equilibrium geometries of the formamide dimer are
shown in the bottom half of Figure I-1. No observed equilibrium geometry of the
dimer is available in this configuratfon. Similar to that for the monomer, the
calculated geometry of the dimer was constrained to be planar. The major points to
be noted concerning the calculated dimer geometries are (1) the Rg,=0; and RH4‘N2 in

the dimer with respect to Rcl.o1 and RH1-N1 in the monomer are greater for the 4-31G

calcutation (+ 0.005 and + 0,007 §. respectively) than those for the STO-3G
calculation (+ 0.001 and + 0.003 A, respectively). Clearly, the formamide monomer
1s calculated in the 4-31G basis set to be more affected by hydrogen bonding than {n
the STO-3G basis set.
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Figure I-1. Equilibrium geometries of the formamide monomer and dimer
calculated using the ab-in{tio ~SCF-MO procedure with the STO-3G
‘ and 4-31G basis sets. The observed geometry of the formamide
B monomer determined by Hirota, ot . al (I-6) is also shown.
E Note that IM| {s the magnitude of the molecular diple moment,
: and & (p, o .y,) 1s the angle between the dipole moment

vector and the cl'"l bond vector.

P B A T YT T




Calculated (STO-3G and 4-31G) electronic charge distributions for the
calculated equilibrium geometries of the formamide monomer are shown in the left-
half of Figure I-2., The polarization of charges across all bonds increases as one
goes from the STO-3G to the 4-31G basis set. It is also shown that the charge
distribution for the formamide monomer calculated using the even more elaborate 6-
31G basis set (I-4) 1s not too different from the 4-31G calculated charge
distribution. This statement is supported further by noting that Ips | (4-31G) =
4.471D 1s closer in value to I|A|(observed) = 3.71 + 0.06D0 than 1s ju |(STO-3G) =
2.641D. Both © (4-31G) = 41.3° and © (STO-3G) = 39.3° are 1n near-agreement with 6
(observed) = 39.6°,

Calculated (STO-3G and 4-31G) electronic charge distributions for the
calculated equilibrium geometries of the formamide dimer are shown in the right-half
of Figure I-2. As in the case of the formamide monomer, the polarization of charges
across all bonds increases as one goes from the ST0-3G to the 4-31G basis set., This
observation s reflected in |IA{ (4-31G) = 10.331D befng greater than |m | (STO-
3G) = 6.280D. The greater polarization of charge across the hydrogen bond
calculated using the 4-31G basis set implies a greater fntermolecular {nteraction
which should result 1n a greater value of |X;].

Figure I-3 presents the plot of Kc=o ¥8. Ry, calculated with the 4-31G basis
set. The linear regression fit of the points ylelded an equation, KC=0 = 1463.1 -

97.5 RO...H' with an r2 = 0.993. The slope of the plot yields a value of Xl+ =

-0.13 x 10730Nt. The terms x1+. K§So {force constant for the calculated equilibrium
geometry at R = 1.922 R). +w (amide-1I frequency), Egcr (total energy of the
dimer), and A lbinding energy of the dimer or hydrogen bond stabilization energy)
calculated for the formamide dimer empioying the 4-31G and STO-3G basis sets are ,
given in Table I-1. i

Although lX1+I (4-31G) has increased relative to |X1+| (STO-3G), 1t 1s stil

less than the minimum vaiue of 0.35 10”30nt predicted by Scott (]-2) to sustain a
Davydov soliton in alpha-helical polypeptides. However, since (Xl | 1s proportional
to the hydrogen bond binding energy (A1in Table I-I), the stronger the hydrogen bond,
the greater the value of lx1+l. There 1s no doubt that the hydrogen bond for the
formamide dimer is stronger than what we have calculated using the 4-31G basis set,
because we have neglected the van der Waals forces. Furthermore. the strength of
hydrogen bonds between molecular units in a hydrogen-bonded polymer chain can be
doudble that of the hydrogen bond in a dimer (I-5). Therefore, by including van der
Waals forces in our theoretical formalism and by fncreasing the number of formamide B
monomer units in our model of the polypeptide, we would expect the calculated le |

to increase to a value perhaps greater than 0.35 x 10'1°Nt. From the perspective of
the quantum mechanical calculation of X, , the question of the presence of Davydov ]
solitons in alpha-helical polypeptides 1s still not resolved. ﬁ
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Electronic charge distributions for equilibrium geometries

of the formamide monomer and dimer calculated using the ab-
initio -SCF-MO procedure with the ST0-3G and 4-31G basis sets.
The electronic charge distribution for the formamide dimer
calculated by Hagler and Lapiccirella (I-4) with the 6-31G basis
set 1s 21so shown. The terms |M| and 8 (a, !CI'NI) are

defined in the caption to Figure I-1,
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A plot of the C=0 stretching force constant (K

function of hydrogen bond length (R ) for
dimer calculated using the gh:injxgb'i
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CF=MO procedure with
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TABLE 1-1

Calculated values of the exciton-phonon coupling term (Xl*) and related

parameters for the formamide dimer.

PARAME TER PRESENT WORK PRESENT WORK
4-316 $T0-36
X 1+ ilQEENIl =0.13 =0.07
K 53 (Nt/m) 1275¢) 1553¢)
Fw(em™) 1660 1660
Egor (au) -337.376457664  ~333.383404267
A e -0.36168 -0.18984

SCOTT, 1982°)

Q.35
na
na
na

na

(a) (A = Eger (dimer) -2Egor (monomer); na = not applicable

(b) A.C. Scott, Phys. Rev. A 26 , 578 (1982)

{c) chg (4-31G, monomer) = 1285 Nt/m;

chg(STO-3G. monomer) = 1586 Nt/m.
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